(1)h(x)=x-(a+1)lnx-a/x+3,定义域x>0
h'(x)=1-(a+1)/x+a/x^2
=[x^2-(a+1)x+a]/x^2
=(x-a)(x-1)/x^2
①a<=0
当0
②0当0
h'(x)>=0,h(x)在x>0上单调递增
④a>1
当0
根据题意,当1<=x<=e时,h(x)>=0恒成立
①a<=0
h(x)在[1,e]上递增,则h(1)=1-a+3>=0
a<=4
即a<=0
②0h(x)在[1,e]上递增,则h(1)=1-a+3>=0
a<=4
即0③a=1
h(x)在[1,e]上递增,则h(1)=1-a+3>=0
a<=4
即a=1
④1h(x)在(1,a)上递减,在(a,e]上递增,则h(a)=a-(a+1)lna-1+3>=0
(a+1)lna<=a+2
lna<=1+1/(a+1)
因为0
h(x)在[1,e]上递减,则h(e)=e-a-1-a/e+3>=0
a+a/e<=e+2
a<=e(e+2)/(e+1)
即e<=a<=e(e+2)/(e+1)
综上所述,a<=e(e+2)/(e+1)