n(n+1)/2。
仔细观察数列1,3,6,10,15…可以发现:
(1)1=1
(2)3=1+2
(3)6=1+2+3
(4)10=1+2+3+4
(5)15=1+2+3+4+5
……
(6)第n项为:1+2+3+4+…+n= n(n+1)/2。(1、2、3、4、5……n,是一个以1为首项,1为公差的等差数列,第n项就是对其求和)
扩展资料:
等差数列的其他推论:
①和=(首项+末项)×项数÷2。
②项数=(末项-首项)÷公差+1。
③首项=2x和÷项数-末项或末项-公差×(项数-1)。
④末项=2x和÷项数-首项。
⑤末项=首项+(项数-1)×公差。
通项公式求法示例:
{an}满足a₁+ 2a₂+ 3a₃+……+ n×an = n(n+1)(n+2)
解:令bn = a₁+ 2a₂+ 3a₃+……+ n×an = n(n+1)(n+2)
n×an = bn - bn-1 = n(n+1)(n+2)-(n-1)n(n+1)
∴an = 3(n+1)
仔细观察数列1,3,6,10,15…可以发现: 1=1 3=1+2 6=1+2+3 10=1+2+3+4 … ∴第n项为1+2+3+4+…+n=
∴数列1,3,6,10,15…的通项公式为a n =
故答案为a n =
|
一