已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a,b,c∈R.且满足a>b>c,f(1)=0.(Ⅰ)证

2025-03-24 21:31:26
推荐回答(1个)
回答1:

证明:(Ⅰ)由已知3x2+2x+c=-2x
即3x2+4x+c=0.且a+b+c=0,所以c=-5(2分)
△=4b2-4ac>0
因此函数f(x)与g(x)图象交于不同的两点A、B.(6分)
解:(Ⅱ)由题意知,F(x)=ax2+2bx+c
∴函数F(x)的图象的对称轴方程为∵x=-
b
a

又∵a+b+c=0
∴x=
a+c
a
=1+
c
a
<1(8分)
又a>0
∴F(x)在[2,3]单增
f(2)=9
f(3)=21
(10分)
3a+3b=9
8a+5b=21

a=2
b=1
(12分)