固体物理学的固体磁性

2025-04-13 16:57:27
推荐回答(1个)
回答1:

指固体具有的来源于电子自旋和轨道磁矩的一种物性。抗磁性是物质的通性,来源于电子轨道因外磁场而发生变化所产生的与磁场反向的微弱磁矩。金属的磁性比较复杂,除上述抗磁性外,还有源于金属电子气自旋磁矩的总和趋于同磁场平行的顺磁性。非金属顺磁体的磁性来源于固体中原子或离子固有磁矩趋于与磁场的同向排列。原子核亦有磁矩,核磁共振已成为探索物质结构的有力工具。核磁共振成像技术则是当今疾病诊断的重要手段。   铁磁性和亚铁磁性是两类磁有序结构固体具有的强磁性。温度在居里点TC以上固体呈顺磁性,在居里点TC时发生相变而呈铁磁性或亚铁磁性。1907年P.外斯用分子场唯象理论解释铁磁性。1926年实验确定过渡金属铁磁性来源于3d壳层的电子自旋磁矩。W.海森伯在1928年以固体中原子之间电子自旋的直接交换作用给予分子场量子力学的解释。1934年E.斯通纳提出巡游电子模型,可解释一部分实验规律。20世纪50年代M.茹德曼、C.基泰耳、T.糟谷和K.芳田奎提出固体中两个相邻局域磁矩通过传导电子气为媒介传递的间接交换作用,称为RKKY互作用,其特点是互作用能随两磁矩间距离呈振荡型衰减。亚铁磁性是由于一些化合物晶体中含有两种磁性离子,它们有不相等的电子自旋磁矩,且按磁矩反平行方式排列形成两个磁子晶格。铁氧体就是典型例子,在高频和微波领域有重要应用。反铁磁体和亚铁磁体相似,但其两个磁子晶格的离子磁矩大小相等而反平行排列。反铁磁体的温度高于奈耳点TN,其反铁磁性消失,变为顺磁性。铜氧化物高温超导体未掺杂的母材具有反铁磁性。   非晶磁性材料和各种磁记录材料发展迅猛,特别是磁光记录材料将应用延伸到光波领域。1988年在多层磁薄膜中发现巨磁电阻效应,后来又发现具有超巨磁电阻效应的新磁性晶体,为发展磁电子学提供了基础。
固体磁性是一个有很久历史的研究领域。抗磁性是物质的通性,来源于在磁场中电子的轨道运动的变化。从20世纪初至30年代,经过许多学者努力建立了抗磁性的基本理论。范扶累克在1932年证明在某些抗磁分子中会出现顺磁性;朗道在1930年证明导体中传导电子的非局域的轨道运动也产生抗磁性,这是量子的效应;解释了石墨和某些金属之所以具有反常大的抗磁性。居里在1895年测定了顺磁体磁化率的温度关系,朗之万在1905年给出顺磁性的经典统计理论,得出居里定律。顺磁性的量子理论连同大量的实验研究,导致顺磁盐绝热去磁致冷技术出现,电子顺磁共振技术和微波激射放大器的发明,以及固体波谱学的建立。关于铁磁体,1926年人们从实验中判知铁磁性同电子自旋磁矩有关。L.奈耳在1932年提出反铁磁体的唯象理论,后来人们的确发现过渡金属氧化物有反铁磁性。H.克喇末在1934年和P.安德森在1950年相继提出通过氧离子耦合的交换作用解释氧化物的反铁磁性。这一理论已成为在技术上有重要应用的铁氧体的亚铁磁性的基础。金属铬是反铁磁体但没有局域磁矩,其根源在于每一种自旋的电子密度在空间有周期性的变化,即形成自旋密度波。稀土金属的铁磁性,来源于未满的4f壳层的局域磁矩。它们通过巡游电子耦合趋于平行排列,产生铁磁性。居里温度很低的弱铁磁体,其中没有局域磁矩,它的铁磁性同自旋密度的起伏有关。过渡金属的铁磁性是一个困难又复杂的多体问题,还没有比较满意的理论处理。
电子具有自旋和磁矩,它们和电子在晶体中的轨道运动一起,决定了晶体的磁学性质,晶体的许多性质(如力学性质、光学性质、电磁性质等)常常不是各向同性的。作为一个整体的点阵,有大量内部自由度,因此具有大量的集体运动方式,具有各式各样的元激发。