这几道高数题的答案是什么?

自己的答案不确定
2024-11-01 18:48:03
推荐回答(2个)
回答1:

第1题


第2题

第3张图第1题

第2题

回答2:

分析,基本上都是口算的,你自己对比
解:
1、根据奇偶性可得:原积分=8;
2、该积分区域:x²+(y-1/2)²≤1/4与y轴正向所围区域
原积分=∫(0,1/2)dy∫(√(1/4-(y-1/2)²,1/2)f(x,y)dx+∫(1/2,1)dy∫(1/2,√(1/4-(y-1/2)²)f(x,y)dx
原积分=∫(-1/2,0)dx∫(1/2+√(1/4-x²),0)f(x,y)
3、质量=π/2
4、根据奇偶性,只求∫∫x²dxdy=(1/2)∫∫(x²+y²)dxdy=(1/2)·2π·(1/4)=π/4