三角函数值表:
数关系
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系
tanα=sinα/cosα cotα=cosα/sinα
正弦二倍角公式
sin2α = 2cosαsinα
推导:
sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA
拓展公式:
sin2A=2sinAcosA=2tanAcos2A=2tanA/[1+tan2A]
余弦二倍角公式
余弦二倍角公式有三组表示形式,三组形式等价:
1.Cos2a=Cos2a-Sin2a=[1-tan2a]/[1+tan2a]
2.Cos2a=1-2Sin2a
3.Cos2a=2Cos2a-1
推导:
cos2A=cos(A+A)=cosAcosA-sinAsinA=cos^2A-sin^2A=2cos^2A-1=1-2sin^2A
正切二倍角公式
tan2α=2tanα/[1-tan2α]
推导:
tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-tan2A]
扩展资料:
一、以下关系,函数名不变,符号看象限
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
二、两角和公式
cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
三、积化和差公式
sinαsinβ = [cos(α-β)-cos(α+β)] /2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
参考资料来源:
百度百科-三角函数值
百度百科-三角函数公式
请参考图片答案。