新疆阿尔泰造山带构造活动的磷灰石裂变径迹证据

2025-03-31 14:19:52
推荐回答(1个)
回答1:

本节在新疆阿尔泰造山带西部获得一批较为系统的磷灰石裂变径迹分析结果。32个磷灰石裂变径迹年龄为(163.0±6.4)~(46.9±7.2)Ma,平均径迹长度为(14.5±0.1)~(11.3±0.4)μm,长度标准差为(1.4~2.7)μm。区内具有三阶段热历史:约110Ma之前处于约100~120℃较高温稳定阶段,然后在约110~40Ma期间发生快速冷却与隆升事件,从约40Ma开始发生另一较为缓慢的冷却事件。总体上自北而南,剥蚀速率和冷却速率均逐渐变小。本书裂变径迹资料表明,阿尔泰山西段主要断裂带现在向南倾斜,区内构造演化亦主要受Tesbahan、Kulti和Basei三条断裂带逆冲热事件的控制。

我国新疆北部阿尔泰山脉位于西伯利亚板块南缘,属于西伯利亚板块与哈萨克斯坦准噶尔板块的结合带,走向NW,是加里东-海西期增生于西伯利亚板块南缘的陆缘增生造山带。早古生代哈萨克斯坦-准噶尔板块沿额尔齐斯深大断裂带开始俯冲,导致由北东向南西逐渐发展和加强的陆缘岩浆活动核褶皱造山作用(陈哲夫等,1997;王元龙等,2001)。阿尔泰山南缘为泥盆纪火山岩,中部为变质核岩浆岩带,北部边缘为逆冲推覆带。从海西期末至新生代,总体上处于隆升和向南推覆(王广瑞,1996;董永观,2000)。我们在阿尔泰西部地区采集了系列样品,试图探讨阿尔泰造山带中生代以来构造活化的时间以及过早活化的时空制约。

一、地质特征

印度大陆与亚洲大陆碰撞导致印度大陆向亚洲大陆的逐渐缩短汇聚以及新生代变形向北部中亚地区扩散。这种缩短作用的影响,在西藏和喜马拉雅,乃至中国西北地区和蒙古,均清晰可见。早古生代哈萨克斯坦-准噶尔古板块沿额尔齐斯-玛因尼伯断裂带俯冲,引发陆缘岩浆活动和褶皱造山作用,其强度从NE向SW逐渐增大,进而分别形成山区加里东构造岩浆带、山前海西构造岩浆带和额尔齐斯海西构造岩浆带。因此,阿尔泰山区断裂、褶皱和强烈的岩浆活动相当发育(图 1-4-8)。岩浆活动向南西变新(董永观,2000)。褶皱作用和逆冲断裂活动亦与构造岩浆作用相一致。区域断裂带以多期次形成和活动为特征。区内主要断裂带呈NW-SE向,这些断裂带长大于100km,宽几百米至几公里。晚石炭纪之后,推覆断层发育,并形成一系列NW走向的逆断层。同时,发育了大陆沉积和伸展盆地(王广瑞,1996)。作为造山带深部作用的影响,这些断裂带主要形成于海西期。大面积花岗岩主要产出于加里东期和海西期(图1-4-8),它们由于造山作用的影响而呈现片麻状结构。不过,也发现印支-燕山期的岩浆岩(董永观,2000;李志纯,1996;张前锋,1994),其时代向南渐小。

图1-4-8 阿尔泰地区地质图

黑色圆点及旁侧数字代表采样位置及其编号F1、F2、F3、F4、F5和F6分别为额尔齐斯(Ertix)断裂、特斯巴汗(Tesbahan)断裂、库尔提(Kulti)断裂、红山咀断裂、可可托海(Cocotohai)断裂和巴寨(Basei)断裂

例如,额尔齐斯断裂带是一个右行走滑逆冲断裂带,对区域地质演化具有重要作用,它由5条从东向西伸展约650km。额尔齐斯断裂带两侧的岩浆作用、变质作用和成矿作用,均有明显差异。它整体上走向300°,倾向北东,倾角60°~70°,上盘抬升,垂直断距约7km(Zari Muhtar,1994)。它是西伯利亚板块和萨克斯坦板块的缝合带(陈哲夫等,1997;He G.,1995)俯冲作用发生于早泥盆世、中泥盆世和早白垩世(秦元喜等,1994)。不过,更新世以来仍有活动(柏美祥,1996)。Kokotakay-Ertai断裂带走向北—北西,向东倾,延长190km,形成于海西期(董永观,2000),Late Epileistocene以来属于右行倒转走滑断裂带,致使额尔齐斯河流和Ulungur 河流排水系统紊乱(柏美祥等,1996)。

二、试验方法

所采集的样品经粉碎研磨后,应用常规重液分离法和磁选法分选出磷灰石单矿物。将磷灰石颗粒置于玻璃片上,用环氧树脂滴固,然后进行研磨和抛光,使得矿物内表面露出。在25℃下用7% HNO3蚀刻30 s揭示自发径迹,将低铀白云母外探测器与矿物一并入反应堆辐照,之后在25℃下40% HF蚀刻20 s揭示诱发径迹,中子注量利用CN5铀玻璃标定(Bellemans F.,1994)。利用从澳洲进口的AUTOSCAN自动测量装置,选择平行c轴的柱面测出自发径迹和诱发径迹密度,水平封闭径迹长度(Gleadow AJW,et al.,1986)依造Green(1986)建议的程序测定。根据IUGS推荐的ξ常数法和标准裂变径迹年龄方程(Hurford A.J.,1982)计算年龄值。

磷灰石裂变径迹的部分退火带(Partial Annealing Zone)温度通常为60~110℃(Fitzgerald P.G.,1995)。温度高于退火带,不仅没有新的径迹形成,而且已有径迹亦将全部退火消失,裂变径迹年龄为零;当温度低于退火带时,则新径迹不断形成;在退火带内,径迹既有生成又有消失,当温度增加时将使得裂变径迹逐渐减少,从而裂变径迹年龄变小(Bellemans F.,1994),反之亦然。由于新径迹的不断形成,磷灰石的裂变径迹年龄和径迹长度分布特征可以反映其主岩的综合热历史(Green P.F.等,1989)。裂变径迹年龄是过去热事件复杂历史的记录。为了研究岩石经历的地质热历史,可将封闭径迹长度分布形式与裂变径迹年龄相结合,并应用各种程序进行模拟。应用Green等(1989)描述的磷灰石退火特性,可较好地解释测出的磷灰石裂变径迹资料。基于经反演模拟获得的退火特征的定量表征,解释地质热历史(Ketcham,R.A.,1999)。

三、磷灰石裂变径迹分析结果

系列研究样品主要取自我国阿尔泰山区的西部(图1-4-8)地表露头,样品岩性主要包括中酸性岩浆岩、砂岩和少量片麻岩,取样高程变化较大(表1-4-2),其中已经获得磷灰石裂变径迹测试数据的样品32个。这些样品的磷灰石裂变径迹中心年龄为(163.0±6.4)~(46.9±7.2)Ma,多数介于(100.4±5.7)和(46.9±7.2)Ma之间(表1-42,图1-4-9),只两个样品例外,其年龄分别为(160.5±8.3)Ma和(133.9±6.0)Ma,它们采自阿尔泰造山带南缘的额尔齐斯断裂带附近。所有样品的平均长度为(14.5±0.1)~(11.3±0.4)μm,标准差为1.4~2.7μm。取自元古界—二叠系的所有样品,磷灰石裂变径迹年龄均小于其沉积年龄和侵位年龄,表明这些岩石沉积和结晶之后经历的热事件使得裂变径迹退火而年龄变小。

表1-4-2 阿尔泰磷灰石裂变径迹分析结果

续表

注:ρs和ρi分别是自发径迹密度和诱发径迹密度,标准径迹密度和径迹数分别为1.04×106/cm和2607,Ns和Ni分别是自发径迹数和诱发径迹数,P(χ2)是χ2检验概率(Galbraith,1981)。

裂变径迹年龄与样品高程之间具有较好的线性相关趋势(图1-4-9),指示区内比较规律的构造历史或冷却历史,即从100Ma到60Ma呈现快速隆升,此前高程变化不大。图1-4-10表示平均径迹长度与其长度标准差之间的密切相关关系,即平均长度愈长,长度标准差愈小。具有较高长度标准差的岩石,比标准差较低的岩石有着更为复杂的构造热历史。由图1-4-11可知,年轻样品的裂变径迹年龄与平均径迹长度正相关(两个年龄较大的样品例外),这主要受控于从~90Ma至~60Ma的退火作用或加热事件。样品高程与径迹长度亦有一定相关关系,据图1-4-12可区分出3个分布趋势,分别代表南部(菱形符号)、中部(方形)和北部(三角形),它们均呈正相关,但其变化率不同,其中中部地区变化最大,反映了较为复杂的热历史。典型的长度分布直方图(图1-4-13)呈现3个特点:①不同样品的径迹平均长度变化较小,主体为12.6~13.6μm,有2个样品例外,一是TS88为14.5μm,另一个TS79为11.3μm,可能与统计的径迹数较少有关;②长度分布直方图较窄,长度标准差主体变化于1.4~2.3μm,并且绝大多数变化于1.4~1.9μm间。个别样品可能因长度数较少导致长度标准差较大。③长度分布直方图具有单峰特征,小于10μm或大于14μm的径迹很少。小于10μm和大于14μm的径迹,分别来自较年轻颗粒和较老的颗粒。因此,具有类似长度分布特征的样品,它们所经历的地质热历史或冷却史亦类似。

图1-4-9 磷灰石裂变径迹年龄与样品高程关系图

总体上呈负相关,其中年龄较大部分高程变化不明显,约从100Ma至40Ma高程变化较大

图1-4-10 磷灰石裂变径迹平均长度与长度标准差呈现负相关关系

图1-4-11 磷灰石裂变径迹年龄对平均长度关系图

年龄较大部分平均径迹长度变化不大,而年龄小于100Ma部分则平均径迹长度变化较大,并呈正相关

图1-4-12 样品高程对平均径迹长度图

阿尔泰造山带南部(菱形点)、中部(方形点)和北部(三角形点)地区,虽其均呈正相关变化趋势,但变化程度不同;3个区的高程变化幅度相近,而平均径迹长度变化有别,其中以中部地区白花花最大

四、热历史模拟

基于Ketcham等(1999)的退火模型,并应用蒙特卡罗(Monte Carlo)逼近法模拟。根据获得的裂变径迹参数和样品所处的地质背景与条件,确定反演模拟的初始条件。模拟温度从高于裂变径迹退火带的~130℃到现今地表温度,模拟时间从三叠纪到现今。模拟结果见图1-4-14,每个样均获得了最佳的热历史路径(见图中粗线),虚线区代表反演模拟的较好拟合区。每个图左上角标出样品代号、实测径迹长度和模拟径迹长度,实测Pooled年龄和模拟Pooled年龄,以及K-S检验和GOF年龄拟合参数。当K-S值和GOF值均大于0.5时,一般认为模拟结果较好。

图1-4-13 磷灰石封闭径迹长度分布直方图

横坐标为长度/μm,纵坐标为频数/条

如果考虑模拟曲线的整体特征,则所有样品呈现类似的3阶段冷却历史。首先,从早三叠世至早白垩世(约120Ma),处于磷灰石裂变径迹退火带底部,温度为(105-130)~(90-120)℃,属于较高温稳定阶段;然后在120~60Ma期间,发生快速冷却与隆升事件,使得岩石较快地进入退火带的顶部状态,温度为(90-120)~(20-65)℃;第3 阶段,大约从白垩纪末(60Ma)开始,发生另一较为缓慢的冷却事件(图1-4-14)。不过,有的样品在第三阶段出现一个较稳定的温度阶段,有的样品在晚第三系以来出现快速冷却。另一特点是,从北向南,开始快速隆升的时间逐渐变早。

图1-4-14 典型样品经磷灰石裂变径迹反演模拟得到的时间-温度变化历史图

虚线区代表反演模拟的较好拟合区,实线代表最好拟合结果。每个图左上角标出样品代号、实测径迹长度和模拟径迹长度,实测Pooled年龄和模拟Pooled年龄,以及K-S检验和GOF年龄拟合参数;当K-S值和GOF值均大于0.5时,一般认为模拟结果较好

五、地质意义

(一)隆升作用

依据磷灰石裂变径迹资料分析,区内在约110~40Ma经历了一次快速隆升作用,持续时间达~70Ma;快速隆升之前为平稳期,持续时间不小于50Ma,即在大于或等于160~110Ma,这从裂变径迹年龄与样品高程关系图(图1-4-9)、裂变径迹年龄对平均径迹长度图(图1-4-11)以及反演模拟结果(图1-4-14),均得到体现。在80~116Ma之前,阿尔泰地区各构造带均处于磷灰石裂变径迹退火带底部部位(约120℃或3.6km的深部),然后总体上等速隆升至地表。

第2阶段60~90Ma期间,隆升速率(83.3~107.7)m/Ma。60~120Ma的快速隆升作用以及获得(80.4~91.9)Ma的裂变径迹年龄,证实燕山晚期发生过新的陆内挤压造山活动。

(二)冷却速率与剥蚀速率

根据反演模拟的最佳热历史计算,从开始快速隆升冷却至现今,各地块的平均冷却速率和剥蚀速率如下。

北部:库尔特断裂带北部地区剥蚀程度为60.5m/Ma,冷却速率为1.18℃/Ma 或35.8m/Ma。

中部:库尔特断裂带与特斯巴汗断裂带之间地区,其剥蚀速率和冷却速率分别为(20.8~23.0)m/Ma和(0.78~1.00)℃/Ma(23.6~30.3m/Ma)。

南部:特斯巴汗断裂带南部剥蚀速率和冷却速率分别为6.6m/Ma和0.74℃/Ma(22.4m/Ma)。

总体上自北而南,剥蚀速率和冷却速率均逐渐变小。

自北向南,开始隆升的时间渐早,即从北部的80Ma到南部的110Ma,这可能与隆升剥蚀主要受西伯利亚板块向南西挤压作用控制有关。

第2阶段60~90Ma期间,冷却速率为2.5~3.23℃/Ma,相当于抬升速率83.3~107.7m/Ma。60~120Ma的快速隆升作用以及80.4~91.9Ma的裂变径迹年龄,证实燕山晚期发生过新的陆内挤压造山活动。

断裂带对区域构造演化的控制影响如下。

阿尔泰造山带被NW向数条断裂带分割为相应的地块(图1-4-8)。此次工作的研究样品取自西部NNE向剖面线上,少数样品取自中部地带(图1-4-8)。将磷灰石裂变径迹年龄对样品在NNE向的分布距离作图(图1-4-15),样品点有规律分布。由北向南,裂变径迹年龄总体上在变大。如果分别考虑以F1额尔齐斯(Ertix)断裂,F2特斯巴汗(Tesbahan)断裂,F3库尔提(Kulti)断裂和F6巴寨(Basei)断裂为界的3个地块,则从北向南年龄变大的趋势更为明显,并且变化幅度(或趋势线斜率)相同(图1-4-15)。

图1-4-15 磷灰石裂变径迹年龄、样品垂直区域断裂带距离、主要断裂带之间的关系

F1—额尔齐斯(Ertix)断裂,F2—特斯巴汗(Tesbahan)断裂,F3—库尔提(Kulti)断裂,F6—巴寨(Basei)断裂

这种北部年龄较小、南部年龄较大的事实,表明最近热事件的热源位于北部,从而导致远离热源的南部样品,较快较早地降温而脱离退火带,最终记录了较大的裂变径迹年龄;相反,北部样品年龄较小,是因为它们接近热源,脱离退火带的时间较晚。那么,这种热源的分布状况又是如何形成的呢?我们认为,F6巴寨(Basei)断裂,F3库尔提(Kulti)断裂和F2特斯巴汗(Tesbahan)断裂,发生的逆冲构造热事件是产生热源的具体载体和形式。鉴于样品年龄在断裂南侧最小、继之向南变大的特点,证实这些断裂的断面向南倾,即样品愈靠近断裂带,其距断裂面愈近,受热影响愈强,年龄变愈小,反之亦然。沿各条断裂带同时发生的逆冲活动,源动力是西伯利亚板块相对向南(向哈萨克斯坦-准噶尔板块)发生的陆内碰撞俯冲作用,这也是大陆缩短、陆内造山的根本原因。

由此可见,阿尔泰山西段的构造演化主要受Tesbahan、Kulti和Basei三条断裂带逆冲热事件的控制。尤其是Basei断裂带的作用,可与Kulti和Tesbahan断裂相比,而以往重视不够,以为仅是局部断裂而已。同时,这些断裂带进入陆内造山之后,断层面均向南倾,而不是通常认为的向北倾。主要依据是以这3条断裂带为界,其南部样品的裂变径迹年龄逐渐增大,证实向南远离断裂带的样品,受断裂带构造热事件影响较小或者受影响时间滞后(图1-4-15)。事实上,在野外亦可多处见到断裂面向北倾的露头。

参考文献

柏美祥.1996.额尔齐斯活动断裂带.新疆地质,14(2):127~134

柏美祥,向志永.1996.新疆可可托海-二台活动断裂带.内陆地震,10(4):319~329

陈哲夫,陈守德,梁云海,徐新.1997.新疆开合构造与成矿,新疆科技卫生出版社,乌鲁木齐,111~172

董永观.2000.新疆阿尔泰金矿断裂构造控矿规律研究.火山地质与矿产,21(1):41~46

李志纯.1996.阿尔泰造山带构造演化研究重要几个关键问题剖析.大地构造与成矿学,20(4):283~297

秦元喜,董志远.1994.新疆阿尔泰山南缘构造与成矿问题.新疆地质,12(2):164~168

王广瑞.1996.新疆北部及邻区地质构造单元与地质发展史.新疆地质,14(1):12~27

王元龙,成守德.2001.新疆地壳演化与成矿.地质科学,36(2):129~143

张前锋,胡爱琴.1994.阿尔泰地区中新生代岩浆活动的同位素年龄证据.地球化学,23(3):269~280

Bellemans F.,De Corte F..1994.Van Den Haute P.Composition of SRM and CN U-doped glasses:significance for their use as thermal neutron fluence monitors in fission track dating.Radiation Measurements,24(2):153~160

Gleadow AJW,Duddy IR,Green PF and Lovering J.F.1986.Confined fission track lengths in apatite:A diagnostic tool for thermal history analysis[J].Contrib.Mineral.Petrol.,94:405~415

Green P.F..1986.On the thermo-tectonic evolution of northern England:evidence from fission track analysis,Geology,5:493~506

Hurford A.J.,and Green P.F..1982.A users′guide to fission-track dating calibration,Earth Planet.Sci.Lett.,59:343~354

Fitzgerald P.G.,Sorkhabi R.B.,Redfield T.F.,Stump E.,1995.Uplift and denudation of the central Alaska Range:a case study in the use of apatite fission-track thermochronology to determine absolute uplift parameters,J.Geophys.Res.,100:20175~20191

Green P.F.,Duddy I.R.,Laslett G.M.,Hegarty KA,Gleadow A.J.W.,Lovering JF.1989.Thermal annealing of fission tracks in apatite 4.Qualitative modeling techniques and extensions to geological timescales,Isotope Geosciences,79:155~182

Ketcham,R.A.,Donelick,R.A.,Carlson,W.D..1999.Variability of apatite fission-track annealing kinetics III:Extrapolation to geological time scales.American Mineralogist,84,1235~1255

He G.,Liu D.,Li M.,Tang Y.and ZHOU R..1995.The five-stage model of crustal evolution and metallogenic series of chief orogenic belts in Xinjiang,Xinjiang Geology,13(2):1~97

Zari Muhtar.1994.Distribution and geologixal characteristics of the main fracture structures inXinjiang,Jounal of Xinjiang Institue of Technology,15(3):188~194(in Chinese with English abstract)

(袁万明,董金泉,保增宽)