y=(x-1)^3(x-2)^4(x-3)^5求拐点数和极值点。。。用图像法或者画数轴来做

2024-11-15 12:30:13
推荐回答(1个)
回答1:

y=f(x)=(x-1)³(x-2)⁴(x-3)⁵

f'(x)=3(x-1)²(x-2)⁴(x-3)⁵+4(x-1)³(x-2)³(x-3)⁵+5(x-1)³(x-2)⁴(x-3)⁴

      =(x-1)²(x-2)³(x-3)⁴[3(x-2)(x-3)+4(x-1)(x-3)+5(x-1)(x-2)]

      =(x-1)²(x-2)³(x-3)⁴(12x²-46x+40)

驻点:x₁=1 x₂=2 x₃=3 x₄=5/2 x₅=4/3

f''(x)=2(x-1)(x-2)³(x-3)⁴(12x²-46x+40)+3(x-1)²(x-2)²(x-3)⁴(12x²-46x+40)+

         4(x-1)²(x-2)³(x-3)³(12x²-46x+40)+(x-1)²(x-2)³(x-3)⁴(24x-46)

       =(x-1)(x-2)²(x-3)³[2(x-2)(x-3)(12x²-46x+40)+3(x-1)(x-3)(12x²-46x+40)+

          4(x-1)(x-2)(12x²-46x+40)+(x-1)(x-2)(x-3)(24x-46)]

令g(x)=2(x-2)(x-3)(12x²-46x+40)+3(x-1)(x-3)(12x²-46x+40)+

          4(x-1)(x-2)(12x²-46x+40)+(x-1)(x-2)(x-3)(24x-46)

从图像上看,g(x)有4个零点,且g(1)、g(2)、g(3)均≠0

∴拐点数为7个。

∵f''(1)、f''(2)、f''(3)=0

∴极值点:x=5/2 x=4/3