比较常被提到的两种垃圾对象判定算法:
1.引用计数(Reference Counting)
概述:给对象添加一个引用计数器,每有一个地方引用这个对象,计数器值加1,每有一个引用失效则减1。
应用实例:Python中使用了这种算法判定死对象。
优点:实现简单、判定效率高
缺点:难以解决对象之间的循环引用问题
2.可达性分析(Reachability Analysis)
概述:从GC Roots(每种具体实现对GC Roots有不同的定义)作为起点,向下搜索它们引用的对象,可以生成一棵引用树,树的节点视为可达对象,反之视为不可达。
应用实例:Java,C#,Lisp都使用这种算法
=====================================================================
JVM使用“可达性分析算法”来判定一个对象是否会可以被回收,有两个细节需要注意:
Java中GC Roots包括以下几种对象:
a.虚拟机栈(帧栈中的本地变量表)中引用的对象
b.方法区中静态属性引用的对象
c.方法区中常量引用的对象
d.本地方法栈中JNI引用的对象
2.不可达对象一定会被回收吗不是。
执行垃圾回收前JVM会执行不可达对象的finalize方法,如果执行完毕之后该对象变为可达,则不会被回收它。
但一个对象的finalize方法只会被执行一次。参考资料:《深入理解Java虚拟机》周志明
1. 引用计数器算法
解释
系统给每个对象添加一个引用计数器,每当有一个地方引用这个对象的时候,计数器就加1,当引用失效的时候,计数器就减1,在任何一个时刻计数器为0的对象就是不可能被使用的对象,因为没有任何地方持有这个引用,这时这个对象就被视为内存垃圾,等待被虚拟机回收
优点
客观的说,引用计数器算法,他的实现很简单,判定的效率很高,在大部分情况下这都是相当不错的算法
其实,很多案例中都使用了这种算法,比如 IOS 的Object-C , 微软的COM技术(用于给window开发驱动,.net里面的技术几乎都是建立在COM上的),Python语言等.
缺陷
无法解决循环引用的问题.
这就好像是悬崖边的人采集草药的人, 想要活下去就必须要有一根绳子绑在悬崖上. 如果有两个人, 甲的手拉着悬崖, 乙的手拉着甲, 那么这两个人都能活, 但是, 如果甲的手拉着乙, 乙的手也拉着甲, 虽然这两个人都认为自己被别人拉着, 但是一样会掉下悬崖.
比如说 A对象的一个属性引用B,B对象的一个属性同时引用A A.b = B() B.a = A(); 这个A,B对象的计数器都是1,可是,如果没有其他任何地方引用A,B对象的时候,A,B对象其实在系统中是无法发挥任何作用的,既然无法发挥作用,那就应该被视作内存垃圾予以清理掉,可是因为此时A,B的计数器的值都是1,虚拟机就无法回收A,B对象,这样就会造成内存浪费,这在计算机系统中是不可容忍的.
解决办法
在语言层面处理, 例如Object-C 就使用强弱引用类型来解决问题.强引用计数器加1 ,弱引用不增加
Java中也有强弱引用
2. 可达性分析算法
解释
这种算法通过一系列成为 "GC Roots " 的对象作为起始点,从这些节点开始向下搜索所有走过的路径成为引用链(Reference Chain) , 当一个对象GC Roots没有任何引用链相连(用图论的话来说就是从GC Roots到这个对象不可达),则证明此对象是不可用的
优点
这个算法可以轻松的解决循环引用的问题
大部分的主流java虚拟机使用的都是这种算法
3. Java语言中的GC Roots
在虚拟机栈(其实是栈帧中的本地变量表)中引用的对象
在方法区中的类静态属性引用对象
在方法区中的常量引用的对象
在本地方法栈中JNI(即一般说的Native方法)的引用对象