解答:证明:(Ⅰ)由an+2=3an+1-2an得:an+2-an+1=2(an+1-an),
又∵a1=1,a2=3,即a2-a1=2,
所以,{ an+1-an}是首项为2,公比为2的等比数列.…(3分)
an+1-an=2×2n-1=2n,…(4分)
an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+2+22+…+2n-1=
=2n-1;…(7分)1?2n
1?2
(Ⅱ)bn=log2(an+1)=log22n=n,…(8分)
Sn=
,…(9分)n(n+1) 2
=1 Sn
=2(2 n(n+1)
?1 n
),1 n+1
所以
+1 S1
+1 S2
+…+1 S3
=2[(1?1 Sn
)+(1 2
?1 2
)+…+(1 3
?1 n
)]1 n+1
=2(1?
)<2.…(14分)1 n+1