∑[n:1→∞]x^n /4^n =∑[n:1→∞](x/4)^n
显然,当-1
部分和Sn=(x/4)[1-(x/4)^n] /(1- x/4)
=x[1-(x/4)^n] /(4-x)
故和函数S=lim[n→+∞]Sn
=lim[n→+∞]x[1-(x/4)^n] /(4-x)
=x(1-0)/(4-x)
=x/(4-x)
求∑xⁿ/4ⁿ的收敛域及其和函数
解:ρ=n→∞lim[1/4^(n+1)]/(1/4ⁿ)=n→∞lim[4ⁿ/4^(n+1)]=1/4;
∴收敛半径R=4;收敛域为:-4
如图所示
consider
1/(1-t)= 1+t+t^2+...
t= x/4
∑(n:0->∞) (x/4)^n
=1/(1- x/4)
=4/(4-x)
1 +∑(n:1->∞) (x/4)^n = 4/(4-x)
∑(n:1->∞) (x/4)^n = 4/(4-x) -1 = x/(4-x)
收敛区域 =(-4,4)