求隐函数的二阶偏导数

2024-11-17 10:01:10
推荐回答(2个)
回答1:

例子:y^2+xy+x^3=0

求解过程:2yy'+xy'+y+3x^2=0(解出y')

2(y')^2+2yy''+y'+xy''+y'+6x=0

解出y''

(1)在方程两边先对X求一阶偏导得出Z关于X的一阶偏导,然后再解出Z关于X的一阶偏导。

(2)在在原来求过一阶偏导的方程两边对X再求一次偏导。此方程当中一定既含有X的一阶偏导,也含有二阶偏导。最后把(1)中解得的一阶偏导代入其中,就能得出只含有二阶偏导的方程,解出即可。

x方向的偏导

设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点。把y固定在y0而让x在x0有增量△x,相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数,记作f'x(x0,y0)或函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数。

回答2: