如图,在三角形ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,求∠DAE的度数

2024-11-17 18:59:49
推荐回答(5个)
回答1:

(1)当∠BAC=90°时
∵BA=BD
∴∠BAD=90°-1/2∠B
∴∠CAD=1/2∠B
∵CA=CE
∴∠CAE=1/2∠ACB
∴∠DAE=1/2(∠ABC+∠ACB)=45°
所以不变
(2)当AB=AC时,∠B=∠ACB
∵CA=CE
∴∠CAE=1/2∠ACB
∵BA=BD
∴∠BDA=90°-1/2∠B
∴∠CAD=∠BDA-∠ACD=90°-1/2∠B-∠B
∴∠DAE=90°-1/2∠B-∠B+1/2∠B=90°-∠B
∴∠DAE=1/2(180°-2∠B)=1/2∠BAC

回答2:

1)解:

设∠1=x°

∵AB=BD

∴∠3=∠4=90-1/2x

∵∠BAC=90°

∴∠5=1/2x

   ∠2=90-x

∵AC=CE

∴∠6=∠E=1/2(90-x)

∴∠DAE=1/2x+1/2(90-x)

              =45°

 

(2)判断:∠DAE=1/2∠BAC

证明:

设∠1=x

∵AB=BD

∴∠3=∠4=(80-X)/2=90-1/2x

∵AB=AC

∴∠1=∠2=x

∴∠5=180-2x-(90-1/2x)=90-3/2x

∵AC=CE

∴∠6=∠E=1/2x

∴∠DAE=90-3/2x+1/2x=90-x

   ∠BAC=(90-1/2x)+(90-3/2x)=180-2x

∴∠DAE=1/2∠BAC

回答3:

解:(1)∵△ABC中,∠BAC=90°,AB=AC,
∴∠B=∠ACB=45°,
∵BD=BA,CE=CA.
∴∠BAD=(180°-45°)÷2,∠CAE=45°÷2,
∴∠DAE=90°-∠BAD+∠CAE=45°.
(2)不变.
∠DAE=90°-
180°-∠B
2
+
1
2
∠ACB=
1
2
(∠B+∠ACB)=45°,
从上式可看出当AB和AC不相等时,∠B+∠ACB也是定值为90°.
所以不变.

回答4:

……

回答5:

q