记O(0, 0), A(π/2, 0), B(π/2, π/2), C(0, π/2). 则积分域 D: 为正方形 OABC,
连接AC, 则 在D1: △OAC内, x+y<=π/2,
在D2: △ABC内, π/2<=x+y<=π。于是
I = ∫ ∫
= ∫<0,π/2>dx∫<0,π/2-x> cos(x+y)dy - ∫<0,π/2>dx∫<π/2-x, π/2> cos(x+y)dy
= ∫<0,π/2>(1-sinx)dx - ∫<0,π/2>(cosx-1)dx
= ∫<0,π/2>(2-sinx-cosx)dx = [2x+cosx-sinx]<0, π/2> = π-2.
可以使用变量替换法.
u=x+y, v=x-y
结果等于 π-2