(2013?静安区二模)已知:如图,在△ABC中,AB=AC,点D、E分别在边AC、AB上,DA=DB,BD与CE相交于点F,

2025-03-21 16:07:50
推荐回答(1个)
回答1:

(1)证明:∵DA=DB,
∴∠FBA=∠EAC,
∵∠AFD=∠BEC,
∴180°-∠AFD=180°-∠BEC,
即∠BFA=∠AEC.
∵在△BFA和△AEC中
∠AFB=∠AEC
∠FBA=∠EAC
AB=AC

∴△BFA≌△AEC(AAS).
∴AF=CE.

(2)解:∵△BFA≌△AEC,
∴BF=AE.
∵∠EAF=∠ECA,∠FEA=∠AEC,
∴△EFA∽△EAC.
EA
EC
EF
EA

∴EA2=EF?CE.
∵EA=BF,CE=AF,
∴BF2=EF?AF.