复数和向量有怎样的关系

2025-04-12 23:52:08
推荐回答(2个)
回答1:

不是这样理解的
向量(a,b)
(c,b)
数量积
(a,b)·(c,b)=(ai+bj)(ci+dj)=ac+bd
其中
i,j为直角坐标系中x轴y轴的正向单位向量
i·j=0
复数也可以用平面直角坐标系上的坐标表示,只不过将y轴换成了虚轴
也就是说,复数与平面直角坐标系上的点可以一一对应的
同样取(a,b)
(c,b)点,
(a,b)·(c,b)=(a+bi)(c+di)=(ac-bd)+(ad+bc)i
其中i为虚数单位,也就是虚轴的单位,i^2=-1
两向量点乘积为一数量,大小等于两向量的模的积再乘以家教的余弦
两复数的积也为复数,其模为两复数模的乘积,辐角等于两复数辐角相加,所以复数可以写成极坐标形式的,(模rho,辐角theta)
,与直角坐标(x,y)的关系是
x=rho*
cos
theta
,
y=rho*
sin
theta
rho,theta为希腊字母的英文读法,键盘上敲不出来
可以介绍一下
两向量叉乘积为一向量,大小等于两向量的模的积再乘以家教的正弦,方向与两向量所在平面垂直(这样有两个),符合右手定
则,即第一个向量转到第二个向量时的大拇指的指向,这样就要放到三维坐标系中考虑它的坐标了,就不深入讲了

回答2:

向量是复数的一种表示方式,而且只能是二维向量(平面向量)。向量还可以干很多别的事呢,但是复数仅仅限制在二维平面上。
严格的说,复数和复平面上以原点为起点的向量一一对应。