矩阵的特征值和特征向量?

做一下题
2024-11-19 17:51:42
推荐回答(5个)
回答1:

矩阵是一个非常抽象的数学概念,很多同学都对其望而生畏。但是,如果能够具体的理解了内部含义,就如同打开了一扇新的大门。

本文主要讲的是特征向量(Eigenvector)和特征值(Eigenvalue)。

01 特征向量(Eigenvector)是什么?

基向量

我们一般研究数学,都是在直角坐标系中,这就造就了两个基向量:v(0,1)和 u(1,0)。

为了说明特征向量,我们先看一下矩阵A和向量B(1,-1):

矩阵A

如果将A和B相乘,结果如下:

AB和2B

AB
矩阵实际上可以被看作为一个变换,AB实际上表达的意思是 向量B 通过矩阵A完成了一次变换,有可能只是拉伸,有可能是旋转,有可能两者都有。

2B
上图中,2B的理解就简单很多,是将向量B拉长2倍。

那么,特征向量的定义如下:

任意给定一个矩阵A,并不是对所有的向量B都能被A拉长(缩短)。凡是能被A拉长(缩短)的向量称为A的特征向量(Eigenvector);拉长(缩短)量就为这个特征向量对应的特征值(Eigenvalue)。

上例中,B就是矩阵A的特征向量,2是特征值。

特征值的求法

02 怎么求矩阵的平方和多次方

矩阵A

还是矩阵A,如果让你求矩阵A的平方,你可能会觉得挺容易的。

但是,如果让你求A的100次方呢?

还有那么容易吗?

按照上面的方法,一点规律没有,只能硬着头皮算。

补充一个概念:对角矩阵

对角矩阵

对角矩阵,顾名思义,只有对角线上有值,其他位置都是0。为什么对角矩阵特殊,如上图,C的平方就是对角线上数的平方,多次方也一样。

那么,怎么才能将矩阵A转变成矩阵C呢?
这就用到特征值和特征向量了。

A的特征值

A有两个特征值,对应两个特征向量:(1,0)和(1,-1)。

如果我们将两个特征向量看作是一个新的坐标系的基向量,并组合成矩阵D:

回答2:

在机器学习领域也广泛使用的一个概念——矩阵的特征值与特征向量。[1]

我们先来看它的定义,定义本身很简单,假设我们有一个n阶的矩阵A以及一个实数lambda,使得我们可以找到一个非零向量x,满足:

如果能够找到的话,我们就称lambda是矩阵A的特征值,非零向量x是矩阵A的特征向量。[2]

几何意义

光从上面的式子其实我们很难看出来什么,但是我们可以结合矩阵变换的几何意义,就会明朗很多。

我们都知道,对于一个n维的向量x来说,如果我们给他乘上一个n阶的方阵A,得到Ax。从几何角度来说,是对向量x进行了一个线性变换。变换之后得到的向量y和原向量x的方向和长度都发生了改变。

但是,对于一个特定的矩阵A来说,总存在一些特定方向的向量x,使得Ax和x的方向没有发生变化,只是长度发生了变化。我们令这个长度发生的变化当做是系数lambda,那么对于这样的向量就称为是矩阵A的特征向量,lambda就是这个特征向量对应的特征值。

求解过程

我们对原式来进行一个很简单的变形:

这里的I表示单位矩阵,如果把它展开的话,可以得到一个n元的齐次线性方程组。这个我们已经很熟悉了,这个齐次线性方程组要存在非零解,那么需要系数行列式

不为零,也就是系数矩阵的秩小于n。

我们将这个行列式展开:

这是一个以lambda为未知数的一元n次方程组,n次方程组在复数集内一共有n个解。我们观察上式,可以发现 lambda 只出现在正对角线上,显然,A的特征值就是方程组的解。因为n次方程组有n个复数集内的解,所以矩阵A在复数集内有n个特征值。

我们举个例子,尝试一下:

假设:

那么

我们套入求根公式可以得出使得 f(lambda) = 0 的两个根 lambda1 lambda2,有:

这个结论可以推广到所有的n都可以成立,也就是说对于一个n阶的方阵A,都可以得到:

回答3:

使用数学软件求解矩阵的特征值与特征向量,具体运算过程如下:

回答4:

回答5: