(1)原式=∫(0,1) √(1+x)dx=(2/3)*(1+x)^(3/2)|(0,1)=(2/3)*2^(3/2)-2/3(2)原式=lim(n->∞) (1/n)*[(1/n)^p+(2/n)^p+...+(n/n)^p]=∫(0,1) x^pdx=[1/(p+1)]*x^(p+1)|(0,1)=1/(p+1)