延长BF与CD的延长线交于K,
∵AB∥CD,
∴△ADC与△ABC等高,
∴S△ADC:S△ABC=CD:AB,
∵AB=2CD,
∴S△ADC:S△ABC=1:2,
∵梯形ABCD的面积为12,
∴S△ABC=
×12=8,2 3
∵△ABE与△CBE等高,E为AC的中点,
∴S△ABE=S△CBE=
S△ABC=4,1 2
∵AB∥CD,
∴△ABE∽△CKE,
∴
= EK BE
=CK AB
=1,CE AE
∴CK=AB=2CD,EK=BE,
∴DK=CD,
∵△DFK∽△AFB,
∴KF:BF=DK:AB=1:2,
设EF=x,
∵BE=EK,BF=2KF,
即BE+x=2(BE-x),
∴BE=3x,FK=2x,
∴EF:BE=1:3,
∴S△AEF=
S△ABE=1 3
,4 3
∴S四边形CDFE=S梯形ABCD-S△ABC-S△AEF=12-8-
=4 3
.8 3
故选C.