求定积分要有上下限的,否则是求不定积分。对于x/(1+√x)可令y=√x,y²=x,2ydy=dx∫x/(1+√x)dx=2∫y³dy/(1+y)而y³dy/(1+y)=(y³+1)/(1+y)-1/(1+y)=(y²-y+1)-1/(1+y)2∫y³dy/(1+y)2∫(y²-y+1)dy-2∫1/(1+y)dy=2[y³/3-y²/2+y-ln(1+y)]+c再把y代换回x即可,如果是求定积分则不用代换,y=√x,x从a到b,则y从√a到√b