影响材料抗冻性的因素有混凝土自身的强度、饱和尺渣水程度、含气量、原材料的性能,混凝土所丛袜处的环境、施工方法、养护条件等。
当在暴露的环境中,能耐久的混凝土应保持其形态、质量和使用功能。混凝土的耐久性研究内容包括:钢筋锈蚀、化学腐蚀、冻融破坏、碱集料破坏。混凝土的抗冻性作为混凝土耐久性的一个重要内容,在北方寒冷地区工程中是急待解决的重要问题之一。
我国地域辽阔,有相当大的部分处于严寒地带,致使不少水工建筑物发生了冻融破坏现象。根据全国水工建筑物耐久性调查资料,在32座大型混凝土坝工程、40余座中小型工程中,22%的大坝和21%的中小型水工建筑物存在冻融破坏问题。
扩展资料
长期的工程实践与室内研究资料表明:提高混凝土抗冻耐久性的一个十分重要而有效的措施是在混凝土拌合物中掺入一定量的引气剂。
引气剂是具有增水作用的表面活性物质,它可以明显的降低混凝土拌合水的表面张力和表面能,使混凝土内部产生大量的微小稳定的封闭气泡。这些气泡切断了部分毛细管通路能使混凝土结冰陵郑悄时产生的膨胀压力得到缓解,不使混凝土遭到破坏,起到缓冲减压的作用。
这些气泡可以阻断混凝土内部毛细管与外界的通路,使外界水份不易浸入,减少了混凝土的渗透性。同时大量的气泡还能起到润滑作用,改善混凝土和易性。
因此,掺用引气剂,使混凝土内部具有足够的含气量,改善了混凝土内部的孔结构,大大提高混凝土的抗冻耐久性。国内外的大量研究成果与工程实践均表明引气后混凝土的抗冻性可成倍提高。
参考资料来源:百度百科-抗冻性
1、含气量 含气量也是影响混凝土抗冻性的主要因素,尤其是加入引气剂形成的微小气孔对提高混 凝土抗冻性史为重要。为使混凝土具有较好的抗冻性,其最佳含气量约为5%~6%。加气的混 凝土不仅从耐久性的观点看是有益的,而且从改善和易性的观点看也是有利的。混凝土中加 气与偶然截留的空气不同,加气的气泡直径的数量级为0. 05mm,而偶然截留的空气一般都 形成大得多的气泡。加气在水泥浆中形成彼此分离的孔隙,因此不会形成连通的透水孔道, 这样就不会增加混凝土的渗透性。这些互不连通的微细气孔在混凝土受冻初期能使毛细孔中 的静水压力减小,即起到减压作用。在混凝土受冻结冰过程中,这些孔隙可阻止或抑制水泥 浆中微小冰体的生成。为使混凝土具有较好的抗冻性,还必须保证气孔在砂浆中分布均匀。 含气量测定是混凝土是否具有抗冻融性能的“传感器”。含气量增加,平均孔隙间距减 小。在氏漏最佳含气量条件下,孔隙间距将会防止冻融造成的压力过大。研究表明,混凝土中含 气量合适,抗冻性可大为提高。滑液核哗模混凝土的含气量在4%左右时,抗冻标号可达500次左右 冻融循环,达到超抗冻性混凝土要求。若要求粉煤灰的混凝土达到4%含气量,应视粉煤灰掺 量成倍增大引气剂量。此时粉煤灰混凝土的抗冻性也能达到300次以上冻融循环,能达到高 抗冻性的要求。 为满足混凝土抗冻性和抗盐性要求,各国都提出了适宜含气量的推荐值,一般均在3%-6%之 间,集料的最大粒径增大,含气量小。根据混凝土抗冻性机理研究得到的最大气泡间距系数 应为0.25mm,对应的最小拐点(临界)含气量3%。引气剂质量较好,气泡越小、表面积越 大,临界含气量有减小趋势。实验表明,当混凝土含气量超过6%后,抗冻性不再提高。 2、水灰比 水灰比大小是影响混凝土各种性能(强度、耐久性等)重要因素。在同样良好成型条件下 ,水灰比不同,混凝土密实程度、孔隙结构也不同。由于多余的游离分子在混凝上硬化过程 中逐渐蒸发掉,形成大量开口孔隙,毛细孔又不能完全被水泥水化生成物填满,直至相互连 通,形成毛细孔连通体系,具有这种孔隙结构的混凝土渗透性、吸水性都很大,最容易使混 凝土受冻破坏。因此我们在考虑引气剂同时,必须考虑水灰比,在含气量相同时,气泡的半 径随水灰比的降低而减少,孔隙结构得到改善,提高了混凝上的抗冻性。 当龄期和养护温度一定时,混凝上的强度取决于水灰比和密实度。在水泥水化过程中, 水灰比对硬化水泥浆的孔隙率有直接的影响,而孔隙率的改变又影响了混凝上的密实度,从 而影响混凝土的孔隙体积。此时,孔隙体积的增加是由于混凝土毛细孔闹行径变大且连通,从而 减少了起缓冲冻胀压力的储备孔,致使混凝土受冻后产生较大的膨胀压力。特别是承受反复 的冻融循环后,混凝土将遭受严重的结构性破坏。因此,为提高混凝土的抗冻性,必须严格控制水灰比,必要时,甚至需人工干预,如加引气剂实施“人工造孔”。 从提高混凝土材料抗冻性而言,主要有两个技术手段:一是提供冻胀破坏的缓冲空腔,加引 气剂就是最重要的基本手段;二是增强材料本身的冻胀抵抗力,控制较小水灰比和较高的抗 压强度。 3、混凝土的饱水状态 混凝土的冻害与其饱水程度有关。一般认为含水量小于孔隙总体积的91. 7%就不会产生冻 结膨胀压力,在混凝土完全保水状态下,其冻结膨胀压力最大。混凝土的饱水状态主要与混 凝上结构的部位及其所处的自然环境有关。在大气中使用的混凝上结构,其含水量均达不到 该值的极限,而处于潮湿环境的混凝土,其含水量要明显增大。最不利的部位是水位变化区 ,此处的混凝上经常处于干湿交替变化的条件下,受冻时极易破坏。此外由于混凝土表层的 含水率通常大于其内部的含水率,且受冻时表层的温度均低于其内部的温度,所以冻害往往 是由表层开始逐步深入发展的。 4、混凝土的受冻龄期 混凝土的抗冻性随龄期的增长而提高。因为龄期越长水泥水化越充分,混凝土强度越高, 抵抗膨胀的能力越大,这一点对旱期受冻的混凝上史为重要。
材料的强度,孔隙率大小及孔隙特征,孔隙内充水饱和度,材料变形能力,材料的耐水性
材料内的细小孔隙最好都是封闭的
材料的吸水程度、强度、孔隙率