已知数列{an}中,a1=2,an+1=an2+2an(n∈N*)(I)证明数列{lg(1+an)}是等比数列,并求数列{an}的通项

2025-04-13 18:38:37
推荐回答(1个)
回答1:

(Ⅰ)∵an+1

a
+2an
an+1+1=(an+1)2
两边取对数可得lg(an+1+1)=2lg(an+1);
又a1=2,∴数列{lg(an+1)}是以lg3为首项,2为公比的等比数列.
lg(an+1)=2n?1lg3,即an+1=32n?1
∴数列{an}的通项公式为an32n?1?1
(Ⅱ)由an+1
a
+2an
,两边同取倒数可得
2
an+1
1
an
?
1
an+2
,即
1
an+2
1
an
?
2
an+1

bn=2(
1
an
?
1
an+1
)

∴Sn=2[(
1
a1
?
1
a2
)+(
1
a2
?
1
a3
)+
…+(
1
an
?
1
an+1
)]
=2(
1
a1
?
1
an+1
)
=1-
2
3