黄金线差法更适合哪些志愿填报方式

2025-03-21 10:05:50
推荐回答(1个)
回答1:

黄金线差法(3/8线差法)的基本原理
3/8线差(用△T表示)的基本计算公式如下:
△T=(最高录取分数-最低录取分数)×3/8+最低录取分数 - 相应批次控制分数线
下面对这个公式的基本思路解释如下:
图1,假设某一本院校某年度在某省招生录取数据是:最低录取分数“T(min)”600分、最高录取分数“T(max)”680分、一本控制分数线“T(k)”520分。我们将该院校录取分数区间均分为8等分,把自下而上第三等分的点位(即图中的“T(3/8)”处)作为比较点位。根据这个约定,无论是哪所院校,无论最低录取分数(或平均录取分数)是多少,无论录取分数的区间是多大,我们都以该校录取分数区间的3/8处作为分析比较的基本点位。这就解决了在同一年度内各院校录取数据不可比的问题。因此,从现在开始,我们就有了统一的口径:比如说甲院校录取分数比乙院校高,是指甲院校录取区间3/8点位的分数比乙院校高,而不是指最低录取分数或平均录取分数等其它指标。
从图中可以看出,本例中该校3/8点位的分数“T(3/8)”是630分。是不是将所有院校的“T(3/8)”都计算出来就可以比较院校的录取分数高低了?刚才已经提到,对于同一年度录取数据可以这么比,但对于不同年度的录取数据则不能这样简单比较,因为各年度同一批次的控制分数线不一样。为解决这个各年度录取数据不可比的问题,我们需要用到前面已经介绍过的一个重要概念——“线差”。具体的说,就是将3/8点位的分数“T(3/8)”与同年的控制分数线“T(k)”比较,看差值是多少(即图中的“△T”,本例的△T=110分)。这样一来,无论何年度、无论何院校、无论录取数据如何,我们都可以用“3/8线差”这个指标去度量、去比较、去分析了。
至此,大家可能会对3/8这个点位的意义感觉模糊。我们可以这样直观的去理解:即要想比较有把握地被某高校录取,考生的分数应该达到该校录取分数区间自下而上3/8的位置。就一般情况而言,这个点位的投入产出比是最高的,它是通过大量统计分析找到的一个黄金点位。若低于这个点位,录取概率会大大降低;若高于这个点位,可能要浪费一些分数。