两边对x求导,得f'(x)+2f(x)=2x
再两边对x求导,得f''(x)+2f'(x)=2,令t=f'(x),则dt/dx=2-2t即dt/(t-1)=-2dx
两边积分得ln[C(t-1)]=-2x,C为常数
则f'(x)-1=[e^(-2x)]/C
积分,得f(x)=D+x-[e^(-2x)]/(2C),C、D为常数
而题中式子以x=0代入,可得f(0)=0,所以D-1/(2C)=0
再以x=-1/2代入,得C=-1,那么D=-1/2-
则f(x)=x-1/2+(e^(-2x))/2
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
答案在图片上,满意请点采纳,谢谢。
愿您学业进步☆⌒_⌒☆