已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax,x∈R(1)已知任意三次函数的图象为中心对称图形,若本题中的

2024-11-20 16:31:32
推荐回答(1个)
回答1:

(1)解法一:由函数f(x)图象以P(2,m)为对称中心,
则f(1)+f(3)=2f(2),代入计算得:3a-1+27-9a=8,∴a=3,
故f(x)=2x3-12x2+18x,
则m=f(2)=16-48+36=4
解法二:由f(x)=2x3-3(a+1)x2+6ax,∴f'(x)=6[x2-(a+1)x+a]=6(x-1)(x-a),
则a+12=2,则a=3,故f(x)=2x3-12x2+18x,
则m=f(2)=16-48+36=4
(2)由f'(x)=6[x2-(a+1)x+a]=6(x-a)(x-1),
因为|a|>1,∴a<-1或a>1,讨论:
1.若a<-1,如下表:

x (0,1) 1 (1,2|a|)
f'(x) - 0 +
f(x) 3a-1
则此时fmin(x)=f(1)=3a-1.
若a>1时,如下表:
x (0,1) 1 (1,a) a (a,2|a|)
f'(x) + 0 - 0 +
f(x) 3a-1 3a2-a3
由f(0)=0,f(a)=3a2-a3=a2(3-a),
i)当1<a≤3时,f(a)≥f(0),则fmin(x)=f(0)=0;
ii)当a>3时,f(a)<f(0),则fmin(x)=f(a)=3a2-a3;

综上所述:fmin(x)=
3a?1,(a<?1)
0,(1<a≤3)
3a2?a3,(a>3)