数学名人小故事100字左右

2024-11-17 01:57:40
推荐回答(5个)
回答1:

1、华罗庚

一九五三年,由著名科学家钱三强带科学院出国考察。团员有华罗庚、赵九章等许多人。华罗庚题出上联一则:”三强韩、赵、魏,”求对下联。这里的“三强”说明是战国时期韩、赵、魏三个战国,却又隐语着代表团团长钱三强同志的名字。

隔了一会儿,华罗庚见大家还无下联,便将自己的下联揭出:“九章勾、股、弦。“《九章》是我国古代著名的数学著作。可是,这里的“九章”又恰好是代表团另一位成员、大气物理学家赵九章的名字。

2、笛卡尔

笛卡尔曾流落到瑞典,邂逅美丽的瑞典公主克里斯蒂娜。笛卡尔发现克里斯蒂娜公主聪明伶俐,便做起了公主的数学老师,于是两人完全沉浸在了数学的世界中。国王知道了这件事后,认为笛卡尔配不上自己的女儿,不但强行拆散他们,还没收了之后笛卡尔写给公主的所有信件。

后来,笛卡尔染上黑死病,在临死前给公主寄去了最后一封信,信中只有一行字:R=A(1-SINΘ)。

自然,国王和大臣们都看不懂这是什么意思,只好交还给公主。公主在纸上建立了极坐标系,用笔在上面描下方程的点,终于解开了这行字的秘密这就是美丽的心形线。看来,数学家也有自己的浪漫方式啊。

3、塞凯赖什夫妇

在一次数学聚会上,一位叫做爱丝特·克莱恩的美女同学提出了这么一个结论:在平面上随便画五个点,那么一定有四个点,它们构成一个凸四边形。塞凯赖什和埃尔德什等人想了好一会儿,没想到该怎么证明。

于是,美女同学得意地宣布了她的证明:这五个点的凸包只可能是五边形、四边形和三角形。前两种情况都已经不用再讨论了,而对于第三种情况,把三角形内的两个点连成一条直线,则三角形的三个顶点中一定有两个顶点在这条直线的同一侧,这四个点便构成了一个凸四边形。众人大呼精彩。

之后,埃尔德什和塞凯赖什仍然对这个问题念念不忘,于是尝试对其进行推广。最终,他们于1935年发表论文,成功地证明了一个更强的结论:对于任意一个正整数N ≥ 3,总存在一个正整数M,使得只要平面上的点有M个,那么一定能从中找到一个凸N边形。埃尔德什把这个问题命名为了“幸福结局问题”。

4、欧拉

欧拉由于过度的工作,欧拉在二十八岁时得了眼病,并最终失明。欧拉完全失明以后,仍然凭着记忆和心算进行研究,直到逝世,竟达17年之久。欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。

拉格朗从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬。

1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:“我死了。”欧拉终于“停止了生命和计算”。

5、陈景润

1977年,陈景润因病住进309医院,见到了从武汉军区刚派来医院进修的由昆。过去陈景润连女人名字的边都不沾,连句话都不说的人,此次年近半百的陈景润见到由昆,眼睛一亮,亲切地和由昆打招呼,话也多了。

后来由昆被派到陈景润的病房当值班医生。这样,接触的机会多了,每次由昆一出现,陈景润都特别高兴。一天,陈景润关切地问由昆,家住在哪?有没有男朋友、有没有成家?由昆毫不设防,她便心直口快地说:“没有,没有,还早着呢。”以后,由昆也十分关心这位中国数学家,斗转星移,彼此产生了爱情。

终于有一天,由昆对身边的数学家提出了疑问:“你是大数学家,有好多人崇拜你,你为什么偏偏选中我呢?”面对心爱的姑娘,陈景润急得满脸通红,他不会年轻人的山盟海誓,许久,陈景润才说出一句话:“我想过了,如果你不同意,我这一辈子就不结婚了。”正是这一句,使由昆不再犹豫,她坦然接受陈景润的感情,并且相依相扶,共同走过了16个春秋。

参考资料来源:百度百科—华罗庚

参考资料来源:百度百科—陈景润

参考资料来源:百度百科—数学家

回答2:

阿基米德
叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银,便请阿基米德鉴定。当他进入浴盆洗澡时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。根据这一道理,就可以判断皇冠是否掺假。
古希腊是数学的故乡.古希腊人为数学的进步耗费了大量心血甚至生命,做出了卓越的贡献.这个文明古国哺育了许多数学家,象泰勒斯、毕达哥拉斯、欧几里德、阿波罗尼斯、阿基米德、托勒密、海伦、丢番图等.希帕蒂娅(Hypatia)——这位有史以来的第一位女数学家也诞生在这里。
希帕蒂娅(又译海帕西娅)(Hypatia)(约370--415)。出生在埃及。是古希腊著名数学家。人称世界上第一位女数学家。这位聪慧的女性以她的才华和贡献跻身于古代世界最优秀的学者之列。而她的惨死实为一千古悲剧。野蛮、残忍的宗教狂徒们竟对她下了毒手。
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.
苏步青1902年9月出生在浙江省。上初三时,来了一位数学老师。他讲:“当今世界,世界列强都想瓜分中国。中华亡国的危险迫在眉睫。为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。” 17岁,苏步青赴日留学。日本一个大学他去当副教授时,苏步青却决定回国。面对困境,他的回答是:“吃苦算得了什么,我心甘情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”

回答3:

阿基米德有许多故事,其中最著名的要算发现阿基米德定律的那个洗澡的故事了。

国王做了一顶金王冠,他怀疑工匠用银子偷换了一部分金子,便要阿基米德鉴定它是不是纯金制的,且不能损坏王冠。阿基米德捧着这顶王冠整天苦苦思索,有一天,阿基米德去浴室洗澡,他跨入浴桶,随着身子浸入浴桶,一部分水就从桶边溢出,阿基米德看到这个现象,头脑中像闪过一道闪电,“我找到了!”。

阿基米德拿一块金块和一块重量相等的银块,分别放入一个盛满水的容器中,发现银块排出的水多得多。于是阿基米德拿了与王冠重量相等的金块,放入盛满水的容器里,测出排出的水量;再把王冠放入盛满水的容器里,看看排出的水量是否一样,问题就解决了。随着进一步研究,沿用至今的流体力学最重要基石——阿基米德定律诞生了。

另外还有他用镜子烧掉敌人战船。被杀前叫敌人等一等,让他做完一道数学题目的故事也脍炙人口。

回答4:

.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。
  2.伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
  3.阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
  4.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
  5.20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的`进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.
  6.祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在7.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
  8.塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
  9.高斯,德国著名数学家,并有“数学王子”的美誉。小时候高斯家里很穷,且他父亲不认为学问有何用,但高斯依旧喜欢看书,话说在小时候,冬天吃完饭后他父亲就会要他上床睡觉,以节省燃油,但当他上床睡觉时,他会将芜菁的内部挖空,里面塞入棉布卷,当成灯来使用,以继续读书,高斯有一个很出名的故事:用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。
  10.天才由于积累,聪明在于勤奋。 -----华罗庚
  1930 年的一天,清华大学数学系主任熊庆来,坐在办公室里看一本《科学》杂志。看着看着,不禁拍案叫绝:“这个华罗庚是哪国留学生?” “他是在哪个大学教书的?”最后还是一位江苏籍的教员慢吞吞地说:“我弟弟有个同乡叫华罗庚,他只念过初中。熊庆来惊奇不已,将华罗庚请到清华大学来。
  从此,华罗庚就成为清华大学数学系助理员。 第二年,他的论文开始在国外著名的数学杂志陆续发表 。几年之后,华罗庚被保送到英国剑桥大学留学。他提出的理论被数学界命名为“华氏定理”。

回答5:

阿基米德是古希腊的数学家,他死于进攻西西里岛的罗马敌兵之手。
死前他还在说:“不要弄坏我的圆”,可见他对数学研究的执着。
他死以后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。