证明:可以利用作差比较法∵ |1+xy|²-|x+y|² = (1+xy)²-(x+y)² =1+2xy+x²y²-(x²+2xy+y²) =1+x²y²-x²-y² =1-x²+y²(x²-1) =(1-x²)(1-y²)∵ |x|≤1,|y|≤1∴ 1-x²≥0,1-y²≥0∴ (1-x²)(1-y²)≥0∴ |1+xy|²-|x+y|²≥0∴ |1+xy|²≥|x+y|²∴ |x+y|≤|1+xy|