解:
由正弦定理可得
a/sinA=b/sinB=c/sinC=2R
a=2RsinA
b=2RsinB
c=2RsinC
由已知:acosB=2ccosA-bcosA,可得
2RsinAcosB=2*2RsinCcosA-2RsinBcosA,即
sinAcosB+sinBcosA=2sinCcosA
sin(A+B)=2sin[π-(A+B)]cosA
sin(A+B)=2sin(A+B)cosA
cosA=1/2
∴A=60°
根据正弦定理可得
sinAcosB=2sinCcosA-sinBcosA
sinAcosB+sinBcosA=2sinCcosA
sinC=2sinCcosA
cosA=1/2
A=60度
解:
由已知:acosB=2ccosA-bcosA,可得
2RsinAcosB=2*2RsinCcosA-2RsinBcosA,即
sinAcosB+sinBcosA=2sinCcosA
sin(A+B)=2sin[π-(A+B)]cosA
sin(A+B)=2sin(A+B)cosA
cosA=1/2
∴A=60°
解:原式:acosB+bcosA=2ccosA 用余弦定理将等式左边的cosB和cosA换成用a,b,c表示的等式,就可得出cosA=1/2
因为A在0°到180°之间,所以A=60°,希望我的回答对你有帮助!