雷诺实验现象及物理意义

2024-11-16 17:59:42
推荐回答(2个)
回答1:

雷诺实验1883年,雷诺(Reynold)做了一系列经典实验,以验证前人所做的同类实验,并力求找到流体流动由层流状态过渡到湍流状态所需的条件。雷诺用滴管在流体内注人有色颜料,发现流速不大时,管内呈现一条条与管壁平行并清晰可见的有色细丝即脉线,管内流体分层流动,互不混淆,说明管内流体处于层流运动状态。若保持管径不变,增大流速,则脉线变粗,开始出现波纹,随管内流速的增加,波纹的数目和振幅逐渐加大,当流速达到某数值时,脉线突然分裂成许多运动着的小涡旋,继而很快消失,使整个管内的流体带上了淡薄的颜料的颜色。这说明管内流体的不规则运动,使各部分颜料颗粒相互剧烈掺混,并混乱而均匀地分散到整个流体之中,导致脉线消失,此时流体处于湍流状态。

回答2:

雷诺揭示了重要的流体流动机理,即根据流速的大小,流体有两种不同的形态。当流体流速较小时,流体质点只沿流动方向作一维的运动,与其周围的流体间无宏观的混合即分层流动这种流动形态称为层流或滞流。流体流速增大到某个值后,流体质点除流动方向上的流动外,还向其它方向作随机的运动,即存在流体质点的不规则脉动,这种流体形态称为湍流。
反映了沿程阻力系数λ是与流态密切相关的参数,计算λ值必须首先确定水流的流态。
液体流态的判别是用无量纲数雷诺数Re作为判据的。
雷诺数是由流速v、水力半径R和运动粘滞系数υ组成的无量纲数,所以雷诺数Re表示惯性力与粘滞力的比值关系,当Re较小时,说明粘滞力占主导,液体为层流;反之则为紊流。

1、观察液体流动时的层流和紊流现象。区分两种不同流态的特征,搞清两种流态产生的条件。分析圆管流态转化的规律,加深对雷诺数的理解。
2、测定颜色水在管中的不同状态下的雷诺数及沿程水头损失。绘制沿程水头损失和断面平均流速的关系曲线,验证不同流态下沿程水头损失的规律是不同的。进一步掌握层流、紊流两种流态的运动学特性与动力学特性。
3、通过对颜色水在管中的不同状态的分析,加深对管流不同流态的了解。学习古典流体力学中应用无量纲参数进行实验研究的方法,并了解其实用意义。

1、液体在运动时,存在着两种根本不同的流动状态。当液体流速较小时,惯性力较小,粘滞力对质点起控制作用,使各流层的液体质点互不混杂,液流呈层流运动。当液体流速逐渐增大,质点惯性力也逐渐增
雷诺实验
大,粘滞力对质点的控制逐渐减弱,当流速达到一定程度时,各流层的液体形成涡体并能脱离原流层,液流质点即互相混杂,液流呈紊流运动。这种从层流到紊流的运动状态,反应了液流内部结构从量变到质变的一个变化过程。
液体运动的层流和紊流两种型态,首先由英国物理学家雷诺进行了定性与定量的证实,并根据研究结果,提出液流型态可用下列无量纲数来判断:
Re=Vd/ν
Re称为雷诺数。液流型态开始变化时的雷诺数叫做临界雷诺数。
在雷诺实验装置中,通过有色液体的质点运动,可以将两种流态的根本区别清晰地反映出来。在层流中,有色液体与水互不混掺,呈直线运动状态,在紊流中,有大小不等的涡体振荡于各流层之间,有色液体与水混掺。
2、在如图所示的实验设备图中,取1-1,1-2两断面,由恒定总流的能量方程知:
因为管径不变V1=V2△h
所以,压差计两测压管水面高差△h即为1-1和1-2两断面间的沿程水头损失,用重量法或体积浊测出流量,并由实测的流量值求得断面平均流速,作为lghf和lgv关系曲线,如下图所示,曲线上EC段和BD段均可用直线关系式表示,由斜截式方程得:
lghf=lgk+mlgvlghf=lgkvmhf=kvmm为直线的斜率
式中:
实验结果表明EC=1,θ=45°,说明沿程水头损失与流速的一次方成正比例关系,为层流区。BD段为紊流区,沿程水头损失与流速的1.75~2次方成比例,即m=1.75~2.0,其中AB段即为层流向紊流转变的过渡区,BC段为紊流向层流转变的过渡区,C点为紊流向层流转变的临界点,C点所对应流速为下临界流速,C点所对应的雷诺数为下临界雷诺数。A点为层流向紊流转变的临界点,A点所对应流速为上临界流速,A点所对应的雷诺数为上临界雷诺数。