如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴交于点A(-2,0)、B(6,0),与y轴交于点C,直线C

2025-03-29 10:15:48
推荐回答(1个)
回答1:

解答:解:(1)根据题意得

4a-2b+4=0
36a+6b+4=0

解得:
a=-
1
3
b=
4
3

所以抛物线的解析式为y=-
1
3
x2+
4
3
x+4


(2)如图1,过点Q的对应点Q'作EF⊥CD于点E,交x轴于点F.
设P(x,y),则CQ=x,PQ=4-y.
由题意可知:CQ'=CQ=x,P'Q'=PQ=4-y,∠CQP=∠CQ'P'=90°.
∴∠QCQ'+∠CQ'E=∠P'Q'F+∠CQ'E=90°.
∴∠P'Q'F=∠QCQ'=α.
又∵cosα=
3
5

EQ′=
4
5
x
FQ′=
3
5
(4-y)

4
5
x+
3
5
(4-y)=4

y=-
1
3
x2+
4
3
x+4

整理可得
1
5
x2=4

x1=2
5
x2=-2
5
(舍去).
P(2
5
8
5
-8
3
)

如图2,过点Q的对应点Q'作EF⊥CD于点E,交x轴于点F.
设P(x,y),则CQ=-x,PQ=4-y.
可得∠P'Q'F=∠QCQ'=α.
又∵cosα=
3
5

EQ′=-
4
5
x
FQ′=
3
5
(4-y)

-
4
5
x+4=
3
5
(4-y)

y=-
1
3
x2+
4
3
x+4

整理可得
1
5
x2=4

x1=2
5
(舍去),x2=-2
5

P(-2
5
,-
8
5
+8
3
)

P(2
5
8
5
-8
3
)
P(-2
5
,-
8
5
+8
3
)