x^4+x^3+x^2+x+1在实数范围内因式分解

2024-11-16 11:53:25
推荐回答(1个)
回答1:

x^4+x^3+x^2+x+1
=x^2[x^2+x+1+1/x+1/x^2]
=x^2[(x+1/x)^2+(x+1/x)-1]
=x^2[(x+1/x)^2+(x+1/x)+1/4-5/4]
=x^2[(x+1/x+1/2)^2-5/4]
=x^2(x+1/x+1/2-√5/2)(x+1/x+1/2+√5/2)
=(x^2+1+x/2-√5x/2)(x^2+1+x/2+√5x/2)