k1a1+k2a2+k3a3+k4a4=0无解k1(a1+a2)+k2(a2+a3)+k3(a3+a4)+k4(a4+a1)=0化简得(k1+k4)a1+(k2+k1)a2+(k2+k3)a3+(k1+k4)a4=0根据第一行的式子,所以线性无关