证明的方法有很多:
第一种,最简单的:
设x=0.9999999999999……,那么10x=9.99999999999…,得到
10x-x=9
得x=1
第二种,也很简单的:
设x=0.999999999999……,那么x/3=0.333333333333……=1/3,得
x/3=1/3
x=1
第三种,稍微要绕一点脑筋:
你用竖式计算1除以1(竖式应该会吧,小学学过的),不同的是一开始不要直接商1,而要商0,那么余数是1,添加一个0变成10,然后商9,10-9=1,又得到余数是1,再按照上面的方法进行计算,就会算出来1/1=0.9999999……
第四种,可以用极限来做:
等比数列的求和公式是[a1(1-q^n)]/(1-q),那么当q<1且n->无穷大的时候,这个式子的极限就是a1/(1-q)。由于循环小数0.aaaa……=a/10+a/100+a/1000+a/10000+……,它的每一个加数刚好构成一个无穷的等比数列,而且q=1/10,那么就可以用a1/(1-q)计算0.99999999……,此时a1=0.9,q=1/10,很容易就可以得到0.9999999999……=0.9/(1-1/10)=1
以上就是常见的证明0.99999999999……=1的方法。方法还有很多种。最后结果都是:0.999999999……=1。
另外,我还可以明确地告诉你,以上的推理过程都是比较严密的,不要相信所谓的0.3333333333……只是约等于1/3,0.9999999999……<1。至少在我们所使用的数学中,0.999999999……=1。
∵ 1/3=0.333...
等式两边同时乘以3,即1/3×3=0.333...×3
又∵ 等式左边1/3×3=1,等式右边0.333...×3=0.999...
∴1=0.999...
标准解法:
令0.9的循环为x,
0.9循环可以看成是0.9加上0.09的循环,即:
x=0.9+0.1*x
X-0.1*X=0.9
X(1-0.1)=0.9
0.9X=0.9
所以,x=1
即1=0.999999[0.9的循环]
很简单,如果0.99999...=1,那么按照他的思想0.00000...1是不是也会等于0呢?如果是,那么新一个数学危机又来了
等于