求下列隐函数的导数或偏导数 sin(xy)=x눀y눀+e^xy, 求dy⼀dx

2025-03-29 10:49:22
推荐回答(1个)
回答1:

sin(xy)=x²y²+e^xy,
两边求导得到:
cos(xy)(ydx+xdy)=2xy^2dx+2x^2ydy+e^(xy)(ydx+xdy)
y[cos(xy)-e^(xy)]dx+x[cos(xy)-e^(xy)]dy=2xy^2dx+2x^2ydy
x[cos(xy)-e^(xy)-2xy]dy=y[2xy-cos(xy)+e^(xy)]dx
所以:
dy/dx=y[2xy-cos(xy)+e^(xy)]/{x[cos(xy)-e^(xy)-2xy]}.