∵在等差数列{an}中,a1+a4+a7=39,a3+a6+a9=27,
∴a4=13,a6=9,
∴a4+a6=22,又a4+a6=a1+a9,
∴数列{an}的前9项之和S9=
(a1+a9)×9/2=22×9/2=99.
故答案为:99.
a1+a4+a7=39 a3+a6+a9=27
3a1+9d=39,3a1+15d=27;
解得a1=19,d=-2;
所以S9=99即为所求
a1+a4+a7=39
a3+a6+a9=a1+2d+a4+2d+a7+2d=39+6d=27
d=-2
a2+a5+a8=a1+d+a4+d+a7+d=39+3d=33
S9=39+33+27=99