此题解法如下:
∵ (1+y)dx-(1-x)dy=0
==>dx-dy+(ydx+xdy)=0
==>∫dx-∫dy+∫(ydx+xdy)=0
==>x-y+xy=C (C是常数)
∴ 此方程的通解是x-y+xy=C。
扩展资料:
微分方程指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。
含有未知函数的导数,如 的方程是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程 。
参考资料:百度百科 微分方程
二阶常系数齐次线性微分方程解法:
特征根法是解常系数齐次线性微分方程的一种通用方法。
(1+y)dx-(1-x)dy=0
==>dx-dy+(ydx+xdy)=0
==>∫dx-∫dy+∫(ydx+xdy)=0
==>x-y+xy=C (C是常数)
此方程的通解是x-y+xy=C。
微分方程术语
对一个微分方程而言,它的解会包括一些常数,对于n阶微分方程,它的含有n个独立常数的解称为该方程的通解。二阶常微分方程,在物理中经常会用到,被称作亥姆霍兹方程(Helmholtz equation)。取某个特定值时所得到的解称为方程的特解。例如y=6*cos(x)+7*sin(x)是该方程的一个特解。
解:∵(1+y)dx-(1-x)dy=0
==>dx-dy+(ydx+xdy)=0
==>∫dx-∫dy+∫(ydx+xdy)=0
==>x-y+xy=C (C是常数)
∴此方程的通解是x-y+xy=C。