不定积分中的凑微分法解释一下

2024-11-08 23:08:25
推荐回答(4个)
回答1:

凑微分法是把被积分式凑成某个函数的微分的积分方法,,是换元积分法中的一种方法。

有时需要积分的式子与固定的积分公式不同,但有些相似,这时,我们就可以考虑是否把dx变换成du的形式,[u=f(x)]把积分式中的x的的函数变换成u的函数,使积分式符合积分公式形式。

这样,就很方便的进行积分,再变换成x的形式。

凑微分法的基本思想为:

举个例子:求∫cos3XdX。

观察这个式子,发现它与积分公式∫cosXdX相似;

而积分公式∫cosXdX=sinX+C(C为常数);

因此,此时可以利用凑微分法将∫cos3XdX转化为∫cosXdX的形式;

转化时,设:u=3X,则du=3dX;

∫cos3XdX=∫(cos3X)/3d(3X)=(1/3)∫cosudu;

因为∫cosudu=sinu+C,所以∫cos3XdX=1/3sinu+C;

将3X代回式中,可得:∫cos3XdX=1/3sin3X+C。

扩展资料:

凑微分法的计算步骤:

1、观察待求函数积分,找到与其相似的对应积分公式;

2、引入中间变量,作变量替换,把一个被积表达式变成另一个被积表达式;

3、把原来的被积表达式变成较简易的不定积分。;

4、新的被积表达式与对应积分公式形式一致,依照公式直接得出结果;

5、将中间变量替换成原变量,代入结果中,得到最终目标函数。

回答2:

函数y=f(x)的微分公式是
【dy=f ' (x)dx,即df(x)=f ' (x)dx★】
话说在求函数微分的时候,
需要我们做的是对于公式★从左得到右。
然而公式★作为一个等式,
自然可以考虑其从右得到左——这便是凑微分。
即,需要我们做的是,从f ' (x)dx得到df(x)。
所谓【凑微分】之名,由符号【df(x)】可解其意。
具体“凑”法,例如我们知道dsinx=cosxdx,
把等式左右互换,立即得到cosxdx=dsinx,
这个微分就凑成了。
从而看到,要想熟练地凑微分,必须熟知函数的导数,
就如同上例中我们熟知cosx是sinx的导数一样。
以下说说凑微分在积分中的意义。
例如∫sin³x*cosxdx=∫sin³xdsinx,
把sinx看成一个整体,记成U,
则上述积分成为∫U³dU,此积分有积分公式已可积出。

回答3:

回答4: