令y = x+2 则(x+1)^4+(x+3)^4 =(y-1)^4 + (y+1)^4 =[(y-1)²+(y+1)²]² - 2(y-1)²(y+1)² =(2y²+2)² -2(y²-1)² =4y^4 + 8y² + 4 - 2y^4 +4y²-2 =2y^4 + 12y²+2 = 82 所以 y^4 + 6y² = 40 (y²+3)² = 49 y²+3 = 7 y² = 4 y=±2 x=0,或x=-4