求微分方程(x^2-1)y✀+2xy-cosx=0的通解

2024-11-18 10:57:03
推荐回答(2个)
回答1:

原式等价于 ((x^2-1)y)'=cosx
(x^2-1)y=sinx+C(常数)
y=(sinx+C)/(x^2-1)

回答2:

dy/dx=y'=(-2xy+cosx)/(x^2-1)
(x^2-1)dy=(-2xy+cosx)dx
x^2dy+2xydx-dy-cosxdx=0
因为2xydx=yd(x^2)
所以x^2dy+yd(x^2)-dy-cosxdx=0
x^2*y-y-sinx=c